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ABSTRACT

Emerging technologies such as artificial intelligence (Al), large-scale molecular simulations,
and next-generation materials and drug discovery demand unprecedented computational
power and high-bandwidth interconnects. Conventional two-dimensional integrated circuits
(2D ICs) are nearing their physical and performance limits due to challenges in thermal
management, signal integrity, and leakage currents. Three-dimensional integrated circuits (3D
ICs) offer a promising pathway to overcome these limitations by vertically stacking multiple
device layers, thereby reducing interconnect lengths and enabling a broad range of high-
performance applications. This paper presents a comprehensive review of 3D ICs systems,
with an emphasis on energy efficiency across various conventional and heterogeneous
integration schemes, packaging architectures, and the trade-offs between thermal and
electrical performance. We examine the relative merits of different bonding techniques,
floorplanning algorithms, cooling solutions, and power delivery network (PDN) designs,
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highlighting their interdependencies and optimization challenges. The insights presented
in this review are intended to help researchers and designers identify and implement
strategies that enhance the performance, energy efficiency, and reliability of 3D ICs for
high-performance computing applications.

Thermal Management

Advanced Packaging Signal Integrity

CONTACT Raisul IsIam@raisul@purdue.edu@School of Materials Engineering, Purdue University, West Lafayette, IN, USA

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4
.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which
this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.


https://doi.org/10.1080/23746149.2025.2599301
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2025.2599301&domain=pdf
https://orcid.org/0009-0001-5597-1213
https://orcid.org/0000-0002-1222-6117
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:raisul@purdue.edu

2 (&) R E MUNDE ET AL
1 Introduction

Microprocessor technology has seen great development since its inception in the 1960s. The primary driving force
behind this advancement has been the scaling of silicon (Si) metal-oxide-semiconductor field-effect transistors
(MOSEFETs), which has enabled transistor dimensions to shrink from several millimetres to just a few nanometres.
Moore’s law has been the guiding beacon for this enormous progress in scaling, which stated that the number of
transistors doubles approximately every two years [1]. While Moore’s law did not mention anything about the
physical scaling of the transistors, the doubling of the number of transistors was guided by Dennard scaling,
which stated that as transistors scale, their clock frequency increases while power consumption remains constant
[2,3]. Unfortunately, this scaling lasted until 2005-2006, since when clock frequency stopped increasing because of
high dynamic energy that scales as the square of clock frequency [4]. Subsequently, architectural scaling emerged
through the introduction of multi-core modules within the chip [5]. The impact of this trend on human life has
been nothing short of remarkable. However, like every trend, this scaling approach is reaching its limits.
Packaging limitations, particularly lithographic constraints, have become more pronounced in recent years,
making it extremely difficult to pack more transistors at the nanoscale. Even advanced lithographic techniques
have become prohibitively expensive for most fabrication facilities, leaving only a few competitive fabs remaining
in the market [6-8]. Furthermore, the scaling of physical dimensions of the device comes at a cost of interconnect
delay, reduced signal integrity, and heat dissipation issues to the extent that these bottlenecks hinder the growth of
two-dimensional integrated circuits (2D ICs). With the advent of artificial intelligence (AI) models experiencing a
10x increase in the number of parameters per year, and the growing requirements for high performance with low
power consumption, today’s multi-core 2D IC architecture has been driven to its physical and economic limits.
Therefore, the use of the third dimension for scaling is inevitable [9-12].

Three-dimensional integrated circuits (3D ICs) offer efficient scaling by harnessing the vertical dimension for
stacking multiple active die layers interconnected through high-density vias or Cu-Cu die bonding. This approach
significantly improves computing performance by reducing total interconnect length, signal delay, and footprint.
3D ICs provide improved memory bandwidth by allowing the stacking of multiple primary or cache memory
units, resulting in the increase of the available memory capacity [13,14]. Early research results have demonstrated
the transformative potential of 3D ICs in alleviating interconnect bottlenecks and supporting the development of
advanced system-on-chip (SoC) architectures [15-17]. Recognising this trend, there has been increased interest in
adopting 3D design in dynamic random-access memory (DRAM), in the form of high bandwidth memory
(HBM), which has been industrially adopted by companies like Micron and SK Hynix since 2015 [18] to handle
the Al training load in datacenters. State-of-the-art advancements in 3D IC technology, such as AMD’s 3D V-
Cache, TSMC’s SoIC and Intel’s Foveros architectures (see Figure 1la), demonstrate the commercial viability of
advanced stacking technology [19-22]. With 3D integration, Moore’s original law is not obsolete; rather, it has
gained an additional dimension as depicted in Figure 1b. However, this added dimension brings both opportu-
nities and challenges. This paper discusses these challenges and examines important emerging trends in 3D ICs
technology.

2 Intelligent computing driven by 3D integrated systems

The acceleration of the discovery and creation of knowledge in recent history can be largely attributed to
the accessory intelligence obtained through the advancement of artificial intelligence (AI) enabled by
microelectronics. Initially, massively improved communication and computational aid enabled by a
predominantly man-focused relationship with machines stimulated this growth. The power of this
collaboration drove rapid innovation of machines, both in software and hardware forms. This innovation
has pushed the boundaries of intelligent systems to incredible horizons. For instance, In 2016, the
inflection point came when AlphaGo, an Alcomputer programme by DeepMind, defeated Lee Sedol,
the top human Go master [23].

The growth of intelligent computing began with feature scaling, underwent the era of 2D, multicore
expansion, and has begun vertical aggregation in response to the physical and economic limitations. Planar
architecture is hindered by the inherent complications of making off-chip interconnectivity [24]. As Al is
applied to emerging landscapes with evolving requirements for processing speed, data storage, and energy
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Figure 1. (a) Foveros is a high-performance 3D IC face-to-face (F2F) based packaging technology designed by Intel [19]
(b) 3D ICs Performance with diffrent node technologies (reproduced with permission from [20]).

efficiency, inefficiencies resulting from the need of increasing off-chip communication (termed as Von
Neumann bottleneck) is going to be unsustainable in the near future [25]. Instead, system-level optimisa-
tion of the full computing stack drives 3D integration by increasing interconnect density, minimising
power dissipation, and improving memory bandwidth, thus providing high-capacity, low-cost opportuni-
ties for the future (Figure 2) [24,26].

For training an intelligent computational model requires significant investment in both energy and
money, owing to the introduction of Kaplan scaling, which asserts that performance improvements are a
result of an increase in the number of parameters an Al solution utilises [27]. Scaling the number of
parameters is enabled by chips having fast access to memory which stores the massive datasets required for
training. 3D integration poses a solution to the bottlenecks of off-chip memory by improving the memory
bandwidth with vertical stacking and increasing interconnect density. To further the abilities of intelligent
computing, 3D integration also provides benefits through the heterogeneous integration (HI) of
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Figure 2. Form factor and interconnect density improvements of various packaging technologies (reproduced with
permission from [24]).

technologies. HI means packaging chips of different functionalities, feature sizes, and even fabricated in
different fabs into a single unified system to improve performance. This modularity of design speeds up
commercialisation, reduces cost, and eases IP challenges [28]. The ability to combine technologies on
single chips through 3D integration provides better coordination of storage, communication, and compu-
tation to accelerate the development of intelligent computing and large scale AI models (Figure 3) [23,29].

3 Packaging of 3D ICs

Packaging and assembly are key building blocks of any commercial technology. Several approaches are adopted
for the packaging of 3D ICs, including monolithic 3D integration, direct oxide wafer bonding, metal bonding
using through-silicon-vias (TSVs) and recently developed self-assembly based integration [20]. Table 1 provides
a comparative analysis of 2D, 2.5D, and 3D packaging solutions. In the process of monolithic integration,
devices are connected by interlayer vias and stacked on the same watfer. The vias in monolithic 3D integration
are fine, which avoids the application of a keep-out zone and reduces the concern of induced mechanical stress
[30]. However, the device stacking sequence in monolithic 3D integration is limited to thermal budgets. To
prevent damaging the bottom layers, the devices on the top layers must have a lower thermal budget. In recent
studies of monolithic 3D integration, two-dimensional semiconductors [31,32] and oxide semiconductors such
as indium-gallium-zinc-oxide (IGZO) and indium-tin-zinc-oxide (ITZO) [33,34] have shown potential due to
their lower processing temperatures and compatibility with back-end-of-line (BEOL) processes.

The most promising packaging solution for 3D ICs is the use of TSVs for bonding of die from different
layers. Compared with monolithic 3D integration, the stacking sequence in TSVs is not strictly limited by
thermal budgets because the chips are connected by through-silicon vias after fabricating devices on
individual chips. In TSV formation processes, chemical mechanical planarization (CMP) is commonly
applied to improve stress uniformity, eliminate Cu protrusion, and avoid package warpage [35,36].
Various materials can be used for bonding formation, including metal, oxide, and polymer. Metal bonding
enables chips to be electrically connected, which is conventionally formed by thermal compression. Cu is
the widely used metal due to its outstanding thermal and electrical properties. However, direct Cu-Cu
bonding formation requires high temperature, which may not meet the thermal budget. Efforts have been
made to lower the bonding temperature, such as applying hybrid bonding, surface-activation bonding,
passivation layers, and other novel bonding methods. Figure 4 shows the trend of approaching lower
processing temperatures in TSVs. Direct oxide bonding mainly serves as insulating layers, which can be
formed at room temperature via van der Waals forces. Nevertheless, this kind of bonding typically requires
further annealing to high temperatures to increase stability. Polymer bonding mainly serves as adhesion
layers, which play an important role in providing mechanical support. Due to the larger size of vias, wafer
thinning and keep-out zones are required in TSVs packaging. Wafer thinning not only assists with the
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Figure 3. Evolution of the number of parameters used in state-of-the-art models (black) and memory capacity (red). The
number of parameters utilised in transformer models increases by 410x every 2 years while the memory capacity only
grows at 2x every 2 years. GPU memory is plotted by dividing memory size by six as approximate upper bound of the
largest model which can be trained with corresponding memory (adapted with permission from [29]).

Table 1. Comparison of 2D, 2.5D and 3D packaging techniques.

Packaging type Advantages Disadvantages

2D (planar Mature packaging, low cost, high yield, simple Long interconnections, low interconnect density, high
packaging) processing power consumption

2.5D (interposer- High bandwidth interconnections, easier thermal Limited vertical integration, interposer increases the cost
based) management compare to 3D solutions

3D TSV-based BEOL compatible, heterogeneous integration allowed

3D Monolithic Ultra-thin and dense vertical interconnections,
heterogeneous integration allowed

3D Hybrid bonding Fine-pitch, high-density interconnections

Vias are large, keep-out zones are required, difficult uniform
Cu via filling, Thermal challenges

Difficult thermal budget management, high process
complexity

High alignment difficulty, CTE mismatch

*BEOL: Back end of line, CTE: Coefficient of thermal expansion.

miniaturisation of IC packaging but also enables the vias to connect both sides of the wafer. However,
wafers tend to become fragile after the wafer thinning process. Therefore, chips are often temporarily
bonded and de-bonded on a carrier wafer through heating or exposing polymer adhesive layers to
ultraviolet lasers [37,38]. For instance, photosensitive polyimide [39], Brewer Science polymer [40] are
reported in recent studies.

4 Design methodologies for thermally efficient 3D ICs

3D ICs technology offers many advantages compared to 2D ICs designs. However, the vertical integration
of multiple active layers results in increased power densities, consequently leading to higher on-chip
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Figure 4. Approaches to lowering bonding temperatures in TSV packaging. This data is obtained from [41-54].

temperature [55,56]. High on-chip temperature can have adverse effects on the performance and reliability
of the stacked system. Reliability issues such as electromigration (EM) and negative-bias-temperature
instability (NBTI) become more pronounced with increasing temperature [57-59]. As discussed in section
3, formation of defect-free TSVs is critical to achieving better performance, and this can be achieved by
reducing wafer thickness. However, reduction in wafer thickness can limit heat dissipation through the
wafers due to phonon scattering at the interface layers [60]. Phonon scattering becomes dominant at
higher temperatures, resulting in increased interconnect delay and leakage power, and can even lead to
thermal runaway. The stacked system also consists of dielectric and adhesive bonding materials, which
essentially limit the heat transfer paths due to their high thermal resistances [61]. In 3D ICs, the bottom
side is generally equipped with electrical circuits, so only the top side may be available for heat dissipation
for state-of-the-art cooling techniques. Therefore, implementing thermal-conscious design methodologies
is crucial for efficient 3D ICs development. Here, we review recent studies on thermal designs for 3D ICs
and discuss their solution schemes to overcome thermal challenges through efficient engineering.
Conventionally, hotspot measurements of active chips can be conducted using experimental techniques
such as Infra-red Thermography (IR), Thermoreflectance (TR) Microscopy, Scanning Thermal
Microscopy (SThM) etc [62]. However, in 3D ICs, it is very challenging to conduct heat measurements
for each individual die or layer [63]. Therefore, for accurate prediction of the temperature of each layer, the
development of a corresponding heat transfer model is essential. There are various analytical and
numerical approaches that are reported in the literature for modelling 3D ICs heat transport processes
[64,65]. In 3D ICs, floorplanning, TSV placement, and routing are key important steps, and these steps
should account for thermal-electrical co-design and co-optimisation [66]. Athikulwongse et al. developed a
TSV spread and alignment algorithm to form a uniform thermal conductivity space and increase vertical
overlap among TSVs across the dies in a 3D stack [67]. TSVs help dissipate power efficiently, so it is
advantageous to position TSVs close to cells that dissipate high power density. Therefore, spreading TSV's
according to cells’ power-density dissipation may reduce local temperature and intra-die thermal variation
in 3D ICs. Furthermore, this algorithm helps align TSVs from die to die to avoid heat constriction paths
from TSV-adhesive or TSV-die interfaces (see Figure 5). Thermal-aware floorplanning is an inevitable step
in the 3D IC design flow, as it involves determining the position of each cell on the wafer. Numerous
design algorithms based on finite difference method (FDM), finite element method (FEM), B*-tree, relaxed
conflict net (RCN), and deep reinforcement learning have been proposed to enable thermal-aware
floorplanning of 3D ICs [64,68,69]. In general, the weighted total interconnection wirelength (L,) is
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Figure 6. Reduction in peak temperature (AT,,,,) of top tier die and interconnection length (L,,) reduction showed by
different algorithms. This data is taken from [67-74].

widely accepted as the metric to evaluate the quality of different techniques. Therefore, in thermally aware
placement, temperature is managed as a penalty to the wire-length (L,,) objective function [64]. Figure 6
shows hotspot reduction (AT,,,) and corresponding interconnection length (L,,) reduction demonstrated
by several floorplanning optimisation techniques from the recent reports in literature.

In 3D ICs, it is challenging to remove heat from intermediate layers with increasing numbers of
stacked layers. A major concern is that the Si-layer with thickness <lym exhibits a 2-fold lower
thermal conductivity than its bulk form [75]. Therefore, 3D ICs cannot rely on spontaneous heat
dissipation through Si. If the heat is not removed efliciently, thermomechanical stress arises around
the TSVs due to the generated thermal gradients, which leads to serious reliability concerns [76].
Conventional cooling techniques such as air-cooling, liquid-cooling, backside heat exchangers, or
thermoelectric coolers are not appropriate choices for 3D ICs because of their inability to reach
intermediate layers. Therefore, it is crucial to develop efficient thermal management strategies and
cooling techniques to unlock the full potential of stacked systems. The material choice of dielectrics
and adhesives is the rate-determining step of heat transfer through layers. Kéroglu et al. proposed
replacing the thermally resistive interlayer dielectrics with high thermal conductivity electric
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insulators such as AIN and hexagonal BN (hBN). AIN is an isotropic, high thermal conductivity
material that efficiently removes heat from intermediate layers of a 3D stack. Whereas hBN is a
strongly anisotropic, high thermal conductivity material that helps reduce hotspot peak tempera-
tures [77].

All 3D ICs design options face the challenge of ineffectiveness in removing heat from the intermediate
heat-dissipating layers. Most techniques rely on an array of TSVs [61]. Wei et al. developed a power
delivery networks (PDNs) based framework for delivering noise-free power which also contributes to the
heat removal from intermediate layers [78]. This PDNs framework uses the inter-layer vias (ILVs) for
connecting different components belonging to different layers of 3D ICs. Their simulation results show
that PDNs can reduce the maximum steady-state temperature by 35 °C for a 2-layer monolithic 3D IC. In
the last few years, a significant number of researches have demonstrated the high performance of micro-
channel liquid cooling technique through a variety of architectures [79-81]. For example, Tiwei et al.
proposed a novel impingement-based liquid cooling solution, fabricated using low-cost polymer, to
directly cool the backside of high-performance chip stacks in 3D ICs [82]. Furthermore, Wu et al. from
TSMC invented a direct silicon-water cooling solution for ultra-high-power cooling for 3D ICs as shown
in Figure 7. This technique successfully demonstrated high cooling performance with total power >2600 W
on a single silicon-on-Chip (SoC), equivalent to the power density of 4.8 W/mm? [83]. Modelling of
thermal optimisation of 3D ICs requires heavy computational power due to the requirement of solving
large partial differential equation (PDEs) systems. Recently, a variety of PDE solution schemes have been
developed to solve complex geometries of 3D ICs architectures with appropriate boundary conditions. Liu
et al. proposed a neural network-based framework named DeepOHeat. This is a physics-aware deep
learning model to predict temperature fields in 3D ICs [84]. Table 2 shows a few recently developed
cooling approaches and their corresponding outcomes. With these strategies, it is important to experi-
mentally validate each technique and find a cost-effective thermal management solution for 3D ICs. The
decision of which thermal management technique to implement for a specific chip design is dependent on
its application and cost.

DWC

l Cover |

Water

_ J
Fixture
B Water
Socket —'W —
g Lottt TIM
Probes _
si
TTV : Thermal Test Vehicle BEOL (heat)
BEOL: Back-End of Line N\ J

Figure 7. Schematic of the customised pin socket. An o-ring is utilised to achieve water sealing. Two trenches are
designed in the cover to create a uniform flat plate flow through the Si pillar array. Right top image shows direct water
cooling (DWC) and bottom image shows the addition of SiO, thermal interface model (OX TIM)/Liquid metal TIM (LTM)
(reproduced with permission from [83]).
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Table 2. Recent Development in Cooling Techniques for Thermal Management in 3D ICs.

Paper Approach Outcome Year

[85]  Liquid jet impingement/multi-jet backside cooling Achieves heat transfer coefficients up to 6.25 x 10* Wm™ K" witha 2018
pump power as low as 0.3 W

[86] Embedded microfluidic cooling (die-per-layer supports heat fluxes above 10* W/cm?® with <60 K rise; enables active 2024
microchannels, inter-tier or through-chip channels) two-phase flow cooling directly within the stack

[87]  Thermal scaffolding with conductive dielectric Reduces footprint penalty from 10% to 5.5% due to 3D thermal 2024
materials scaffolding and simultaneously meets worst-case IR drop constraint of

<20 mV at 0.7 V supply and peak temperature constraint of <125 °C

[88]  Temperature-Effect Inversion based thermal Achieves 17.8% and 16.3% reductions in energy consumption at 50 MHz 2024
management (TEI-LP) and 100 MHz respectively

[89] Nano-engineered thin-film thermoelectric cooling Thin-film thermoelectric modules offer 100-300% better coefficient-of- 2025

performance than bulk devices depending on operational scenarios

5 Electrical performance and interconnect considerations

As semiconductor technology advances towards complex 3D architectures and heterogeneous integration,
managing electrical performance and interconnects becomes a critical challenge. The move to stack
multiple dies introduces a new set of issues that can have an impact on the reliability and speed of the
entire system. This section explores several key considerations in this domain: (i) The degradation of signal
integrity and introduction of delays in vertical interconnects like TSVs; (ii) The difficulties in delivering
stable power across these stacked layers; (iii) The parasitic effects of TSVs and interposer routing; (iv)
Increased crosstalk and noise coupling between tightly packed components; and (v) The crucial need to
co-optimise electrical and thermal performance for overall system stability.

3D integration is already delivering link- and system-level gains relevant to automated interconnect
planning. A self-timed 3 nm die-to-die (D2D) PHY demonstrates 8 Gb/s per pin at 0.7 V with 77 f]/bit
energy and about 44 Tb/s/mm? bandwidth density, indicating single-cycle hop latency at fine pitches [90].
A complementary 9 ym-pitch PAM-4 D2D test vehicle in 5/6 nm reports 16 Gb/s per pin, 10.24 Tb/s

aggregate bandwidth, 0.296 pJ/bit, and 17.9 Tb/s/mm?, showing a tileable, cluster-based path to through-
put scaling [91]. Foundry guidance is consistent: the 3D interconnect roadmap targets about a 2xX node-to-
node gain in energy-efficient performance (EEP) by shrinking SoIC bonding pitch roughly 70% per node,
and reports multiple-fold density increases with as much as 87% dynamic-power reduction versus
microbump for near-memory stacks, which provides useful bounds for lane count, pitch, and thermal-
cooling co-design in automation [92].

At the system level, many-core bandwidth-latency-thermal co-optimisation links practical pitch choices
with achievable performance, showing that sub-2 ym vertical interconnects are a feasible threshold for
unlocking higher core-to-memory bandwidth under thermal limits [93]. A comparative PPA study across
heterogeneous 3D options quantifies technology-choice deltas: hybrid bonding yields up to 81.4% timing
improvement versus 2D and 25.8% EDP reduction on commercial CPU-class designs, while signal-
integrity analysis map how MIV (sub-micron), face-to-face, and microbump pitches create trade off
between crosstalk and signal-to-noise ratio (SNR) for constraint generation [94]. For memory-bound
automation, HBM on interposers provides a 4096-bit interface at around 1 GHz achieving roughly 512
GB/s peak bandwidth (Fury X example), illustrating wide-and-slow links that reduce energy per bit within
surface capacity constraints [95]. In heterogeneous multi-tier compute-in-memory (CIM), electrical-
thermal co-design sweeps identify a TSV diameter sweet spot of 1-3 ym that balances throughput and
density with IR-drop and temperature, which is actionable for tier-to-tier channel sizing and thermal-
aware routing [96].

In 3D ICs, signal quality through vertical interconnections like TSV's presents significant reliability and
performance challenges. These vertical channels are subject to parasitic parameters-resistance, capacitance,
and inductance-that degrade signal waveforms and introduce noise [97]. Moreover, the compact stacking
of dies intensifies signal latency, which can lead to synchronisation mismatches and impair system
timing [98].

Parasitic phenomena intrinsic to TSV structures, especially resistance and capacitance, play a central
role in signal loss and propagation delay [99]. As the number of stacked layers grows, the interconnect
density rises, leading to shorter inter-layer paths that still exhibit greater signal distortion due to increased
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coupling. This can result in timing violations and data integrity issues, especially in high-throughput
designs [100].

To alleviate these concerns, multiple engineering approaches are employed. Fine-tuning the physical
attributes of TSVs-such as minimising via diameter, selecting low-resistivity materials, and adopting more
efficient via geometries help in mitigating signal degradation [100]. Complementary circuit-level tech-
niques, including the deployment of buffers, amplifiers, and clock distribution frameworks, further
enhance signal robustness and reduce timing skew [97]. A comparative summary of innovative vertical
interconnect solutions-including carbon nanotube (CNT) TSVs, photonic interconnects, and adaptive
buffer insertion-is presented in Table 3.

Delivering stable and reliable power across vertically stacked dies remains a key bottleneck in 3D IC
architectures. Due to the constrained footprint and elevated current demands, ensuring even voltage
distribution becomes increasingly complex as the layer count rises [106]. A major concern in this context
is the IR drop-voltage reduction along resistive paths-which can lead to insufficient power delivery in
upper tiers and potentially jeopardise system operation [107].

As stacking becomes more aggressive, the interplay of TSV -related parasitic inductance and capacitance
increasingly impacts the PDN, creating voltage ripple and transient instability [106]. If left unaddressed,
such issues may escalate into performance losses or functional failures under dynamic workloads [107].

To enhance power integrity in 3D ICs, various strategies have emerged. Layer-specific power planes can
help in maintaining localised voltage levels and improving power uniformity [106]. Employing low-
resistivity materials in power and ground networks and optimising the TSV layout are also effective in
minimising resistive losses [107]. Additionally, advanced PDN modelling and simulation techniques can
be used proactively to forecast hotspots and guide the design of more resilient power delivery frameworks
[99]. Table 4 outlines key innovations in this space, including fine-grained voltage regulation, hybrid
integration schemes, and thermal-aware co-design methodologies.

Parasitic effects inherent to TSVs, notably resistance (R), capacitance (C), and inductance (L), pose major
design challenges in 3D integrated circuits [113]. These parasitics not only cause signal degradation and delay but

Table 3. Overview of Vertical Interconnect Technologies for Signal Integrity and Delay Improvement.

Paper Name Category Year Advantages
[101] TSV Interposer Integrated X-  Electrical Optimisation 2019 Low insertion loss (2.2 dB), wide bandwidth (2.33 GHz), small group
band Filter Methods delay variation (52 ps); uses high-resistivity silicon to reduce
substrate loss and enhance Q factor.
[102] CNT-based Tapered TSV Material Innovation 2022 Tapered single-/multi-wall CNTs reduce crosstalk-induced delay (by
Structures ~22.8%) and peak noise; lower power loss and improved

transmission/reflection loss vs. Cu-based TSVs.
[103] Edge Coupler Integrated TSV System-Level Integration 2023 Enhanced signal bandwidth and reduced delay through direct
Optical Module EIC-PIC interconnect using TSVs; low insertion loss (<0.35dB @
67 GHz), clean eye diagrams at 112 Gbps.

[104] Hollow Tungsten TSV (W-TSV)  Structural Optimisation 2024 Reduces thermal-induced stress by 60.3%, keeps surface stress
below 31.02 MPa; no KOZ required, enabling denser integration
and better signal reliability.

[105] GNR Interconnect with Buffer Routing and Layout 2025 Simultaneous reduction in interconnect resistance (>30%) and delay

Insertion Strategies (>40%) via optimal buffer placement; improves both signal and
power integrity.

Table 4. Summary of power delivery optimisation techniques.

Paper Name Category Year Advantages

[108] Hybrid-Bonding 3D IC with Inter-Tier Metal Material Innovation 2022 Reduces dynamic IR-drop by up to 77 mV; achieves 17
Sharing and MIM Decap Sharing mV less static IR-drop than micro-bumps; up to 76%

performance boost.

[109] Fully Integrated Voltage Regulator (FIVR)- Electrical Optimisation 2022 5% reduction in power loss and 24x IR-drop reduction
based Power Delivery Methodology for Methods in 5-layer 3D stack.
3D ICs

[110] Hybrid Bonded Backside PDN with nTSVs and ~ Structural Optimisation 2023 69% average IR-drop reduction vs. frontside; nTSVs
CuPads improve IR-drop over uTSVs by 81% (avg) and

77% (peak).

[111] Iterative Layout-Aware Electrothermal Co- Routing and Layout 2025 6 °C lower temperature in LoM vs. MoL; 54% IR-drop
Optimisation (LoM Stack) Strategies reduction using tighter PDN pitch.

[112] 3D Heterogeneously Integrated Digital DC/DC  System-Level 2025 Power density of 1468 W/in?, >96% efficiency, <1%

Power Module for Vertical Power Delivery Integration voltage ripple, and improved IR loss.
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also complicate timing closure and increase the likelihood of timing violations, especially as interconnect density
increases with more stacked layers. High resistance and capacitance along TSVs lead to increased RC delay and
signal attenuation. Their large size and proximity further cause coupling capacitance between adjacent TSVs,
intensifying crosstalk and noise interference. Imperfect TSV processing may introduce defects-for example,
resistive opens or bridges-leading to further deterioration of signal quality due to increases in RC delay. In
addition, interposer routing introduces additional parasitic load and longer signal paths, which can degrade both
signal and power integrity, especially important as system complexity grows [114].

Mitigation strategies include optimising TSV physical parameters (smaller diameter, strategic place-
ment, and selection of low-loss liner materials), use of shielding or guard TSVs, and evolving toward
coaxial or advanced CNT-filled TSVs to reduce parasitics and improve high-frequency performance
[115,116]. Thorough post-bond testing and redundancy in TSV design also help maintain reliability in
large-scale 3D-IC implementations [117,118].

Crosstalk-the undesirable coupling of signals between adjacent TSVs-remains a significant challenge in
high-density 3D stacking [119]. Closely packed TSVs, especially those transmitting high-frequency signals,
generate electrostatic and electromagnetic interference due to the strong coupling capacitance between
them. This can result in signal integrity issues such as increased jitter, false toggling, or data corruption,
ultimately limiting achievable bandwidth and performance.

Several factors influence TSV crosstalk, including TSV pitch, diameter, dielectric environment, and
routing topology. Embedding ground TSVs between signal TSV's and optimising their spatial arrangement
can notably reduce noise coupling. In addition, advanced TSV structures such as CNT-filled, tapered, or
coaxial TSVs have demonstrated reductions in crosstalk-induced delay and power dissipation [115,120].
On the algorithmic side, crosstalk-aware channel encoding and adaptive crosstalk avoidance coding
further mitigate the risk for highly parallel channels [114]. Table 5 outlines some approaches to mitigate
crosstalk and noise issues. These combined materials, physical configurations, and signal processing
approaches help preserve signal integrity in future large-scale 3D ICs.

The electrical and thermal behaviours of 3D ICs are deeply intertwined, necessitating a holistic co-
design approach. High power densities in stacked dies intensify self-heating and thermal gradients, which
affect TSV reliability, induce thermomechanical stress, and may ultimately degrade electrical performance
due to increased resistance, leakage, and electromigration. Simultaneously, TSVs can be leveraged as both
electrical conductors and thermal conduits; their placement and density thus influence both IR-drop and
heat distribution [113].

Co-optimisation techniques-such as thermal-aware floor planning, placement-driven TSV and power grid
design, and coupled electro-thermal simulation-are critical for next-generation 3D systems [124]. Recent works
have demonstrated that evolutionary floor planning algorithms and iterative layout-aware co-optimisation
significantly improve both temperature profiles and IR-drop targets in complex stacks as discussed in the
previous section. Incorporating high-thermal-conductivity materials in dielectric and adhesive layers, as well as
optimising microchannel cooling proximity to hotspots, produces further benefits at the system level. Ultimately,
such integrated co-design methodologies are essential to achieve robust, power-efficient, and high-performance
3D ICs that can strengthen future intelligent computing platforms.

Table 5. Summary of crosstalk and noise mitigation techniques.

Paper Name Year Advantages
[121]  Grounded Shields/Guard 2014 Reduces capacitive coupling by isolating sensitive nets from aggressors and creating a more
Rings effective discharging path.
[119] Optimised Routing (Net 2018 Increases the physical distance between TSVs and other signal paths, which diminishes
Spacing) electromagnetic coupling and its resulting crosstalk.
[121] Differential Signalling 2014 Transmits a signal using a pair of conductors. This method provides superior noise immunity by
effectively rejecting common-mode noise that is coupled to both lines.
[122] Crosstalk Avoidance 2017 Involves remapping data bits before transmission in a way that minimises the crosstalk
Codes (CAGs) generated. This can reduce crosstalk on TSVs and metal wires by approximately 30% and 50%,
respectively.
[123] Tapered TSV Structures 2023  Utilising TSVs with a tapered shape can effectively lower crosstalk-induced delay,
thermomechanical stress, and the power-delay product (PDP).
[119] Adding Reference 2018 Incorporating additional ground vias helps to establish well-defined return paths for the current,

(Ground) Vias which has a significant impact on mitigating crosstalk.
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As high-performance computing (HPC) and Al systems continue to scale, the interconnects between
processors, accelerators, and memory have become a primary performance bottleneck. High-speed
Serializer/Deserializer (SerDes) interfaces, which form the backbone of data centre communication, are
now pushing data rates to 56 Gbps, 112 Gbps, and beyond [125,126]. In traditional systems, these electrical
signals must travel long distances across printed circuit boards (PCBs) to reach front-panel pluggable
optical modules, leading to significant signal degradation, high power consumption, and latency, which
collectively limit system bandwidth and scalability [127].

Advanced 3D IC packaging provides a transformative solution to this challenge through the heterogeneous
integration of co-packaged optics (CPO). CPO involves placing optical I/O engines on the same package substrate
as the primary silicon die, like a switch ASIC or an accelerator. This architecture dramatically shortens the length
of the high-speed electrical traces from tens of centimeters to just a few millimetres [127]. The result is a
substantial reduction in the power required to drive the SerDes links, improved signal integrity due to lower
channel loss, and a massive increase in bandwidth density at the chip edge. By converting high-speed electrical
signals to optical signals closer to the source, 3D packaging with CPO effectively bypasses the conventional
interconnect bottlenecks that hinder the performance of large-scale computing systems.

The implementation of CPO relies heavily on the capabilities of advanced packaging technologies, including
25D and 3D integration, which enable the dense and reliable interconnection of both copper and optical
components [128]. For instance, the use of glass core substrates (GCS) is emerging as a key enabler, offering
superior dimensional stability and electrical properties needed to support the large package sizes and fine-pitch
interconnects required for AI and HPC applications utilising CPO [129]. These advanced packaging techniques
are crucial not only for the ASIC-to-optics interface but also for optimising the high-density copper traces and
TSVs that are integral to the package design [130]. This synergy between 3D packaging and co-packaged optics
represents a critical path for breaking through the memory wall and interconnect-scaling limitations in the next
generation of high-performance computers [131].

6 Summary and outlook

3D integrated circuit (3D ICs) technology has evolved significantly since its first commercial deployment
in image sensor modules in the late 2000s (Figure 8). The concept was initially driven by the formation of
through-silicon vias (TSVs) to enable vertically stacked systems. Since then, 3D ICs have gained momen-
tum in both research and product development. Early industrial adoption focused on applications such as
image sensors and DRAM stacking, with high-bandwidth memory (HBM) emerging as a landmark
achievement in stacking technology. It has now been nearly a decade since Micron and Samsung began
mass-producing HBM for data-intensive Al workloads. Emerging paradigms such as BEOL-compatible
oxide-semiconductors, processing-in-memory (PIM) or computing-in-memory (CIM), and neuromorphic
computing have further accelerated interest in 3D IC-based computing platforms.

Packaging remains one of the most critical aspects of stacked device technology, requiring highly
advanced bonding processes. Although substantial progress has been made in both temporary and
permanent bonding techniques, several key challenges still remain. The fabrication of high aspect-ratio
(AR) TSVs is particularly demanding as the number of stacked dies increases. Uniform deposition in such
TSVs is difficult to achieve due to defect formation during processing, and reliable defect characterisation
remains a major hurdle. Companies such as Carl Zeiss and Bruker are developing dedicated metrology
tools to address TSV defect detection, while machine learning approaches-including neural network-based
frameworks-are being explored to enhance defect analysis.

Other pressing research areas include the handling of carrier wafers, optimisation of temporary/
permanent bonding materials, integration of thermal interface materials (TIMs), TSVs alignment, and
the co-design of these factors with thermal management strategies. Design consideration of the thermal
budget for the bottom die in a stack is mostly lacking in the literature. Incorporating thermal management
strategies early in the 3D ICs design flow is essential. Most reported heat transfer models adopt simplified
architectures that overlook real-world physical complexities. Developing more sophisticated and realistic
thermal transport models is critical for accurately predicting heat dissipation across all layers, with
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Figure 8. Major timeline of 3D system technology development and future outlook.

particular emphasis on the thermal behaviour of intermediate layers, which is vital for ensuring product
reliability.

Although some studies have addressed intermediate-layer thermal management through optimised
power delivery network (PDN) architectures, the effective mitigation of localised hotspots in these regions
remains largely unexplored. Cooling technologies tailored for 3D ICs are still in their early stages. While
microfluidic cooling shows strong potential for stacked systems, it must be co-optimised with other
reliability parameters, such as dielectric loss minimisation, to ensure overall system performance.
Currently, the major research thrust of 3D ICs technology is focused on optimising electrical and thermal
performance and leveraging its advantages through heterogeneous integration (HI). However, for a
smooth transition from academia to industry, yield and cost at manufacturing scale must be considered.
Multiple models now guide cost-aware flow selection for stacked systems. Taouil’s PhD thesis develops
yield/cost formulations that capture stack-level defect compounding and the role of pre-/mid-/post-bond
test and repair in overall economics [132]. At the system level, Dong and Xie et al. analyse how
partitioning choices and integration flows drive total cost, while Chen et al. emphasise the testing
component and design-for-test overheads as key levers in cost-effective 3D integration [133,134]. More
recently, Jeloka et al. frame these trade-offs in a contemporary system-technology co-optimisation context,
highlighting how advances in bonding pitch and power-delivery constraints shift cost/performance break-
even points among flows [135]. In parallel, standardisation is progressing: IEEE Std 1838 defines a test-
access architecture for three-dimensional stacked ICs, linking cost/yield insights to actionable design for
testability (DfT) practice and enabling interoperable test strategies across dies and stacks [136]. Broader
adoption of such standards in the design, fabrication, and testing workflows will be an important step
toward the large-scale commercialisation of 3D ICs technology.

In conclusion, while 3D ICs present significant fabrication, thermal, and reliability challenges, rapid
advancements in simulation, manufacturing, and characterisation techniques are steadily making them a
more practical solution for next-generation computing demands. The formation of global 3D ICs research
consortia reflects a coordinated push across academia and industry to address these challenges. The
development of 3D ICs technology spans multiple engineering disciplines, requiring interdisciplinary
collaboration to bring the technology to mainstream consumer applications. This review provides
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researchers and practitioners with a consolidated view of the current state of 3D ICs, along with key
challenges and future directions for this transformative technology.
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